quinta-feira, 6 de agosto de 2020


ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]




Na mecânica quântica, a Representação de Dirac ou Representação de Interação é uma intermediação entre a Representação de Schrödinger e a Representação de Heisenberg. Considerando que nas outras duas representações ou o vetor do estado quântico ou o operador possuem dependência com o tempo, na Representação de Dirac ambas possuem parte da dependência do tempo dos observáveis.
Equações que incluem operadores agindo em tempos distintos, que são comportadas na Representação de Dirac, não necessariamente serão comportados nas representações de Schrödinger e Heisenberg. Isto é porque transformações unitárias do tempo se relaciona com operadores de uma representação com o operador análogo da outra representação.


Definição[editar | editar código-fonte]

Operadores e vetores dos estados quânticos na Representação de Dirac são relacionados pela mudança de base para aqueles operadores e vetores na Representação de Schrödinger.[1]
Para alternar na Representação de Dirac, nós dividimos o hamiltoniano da Representação de Schrödinger em duas partes, . Qualquer escolha das partes nos dará uma Representação de Dirac válida, mas para nos ser útil na simplificação do problema, as partes serão escolhidas de forma que  será facilmente resolvido e  conterá as partes mais difíceis de analisar deste sistema.
Se o hamiltoniano for dependente do tempo (por exemplo, se o sistema quântico interagir com um campo elétrico aplicado externo que varia com o tempo), normalmente nos será vantajoso incluir explicitamente os termos dependentes do tempo com , deixando o  independente do tempo. Nós iremos assumir que este será o caso. (se existir um contexto em que isto faça sentido ter um  dependente do tempo, então deve-se trocar  pelo operador de evolução).

Vetor do estado quântico[editar | editar código-fonte]

O vetor do estado quântico na Representação de Dirac é definido como[2]

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde  é o mesmo vetor da Representação de Schrödinger.

Operadores[editar | editar código-fonte]

Um operador na Representação de Dirac é definido como
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Perceba que  não será dependente de t e pode ser reescrito como .

Operador hamiltoniano[editar | editar código-fonte]

Para o operador  a Representação de Dirac e Schrödinger são idênticas
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isto pode ser comprovador usando o facto que os operadores comutáveis com funções diferenciáveis. Este operador em particular também pode ser escrito da forma  sem ambiguidade.
Para a perturbação hamiltoniana , teremos
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde a perturbação hamiltoniana da Representação de Dirac se torna um hamiltoniano dependente do tempo (a não ser que ).
É possível de se obter a Representação de Dirac para um hamiltoniano dependente do tempo , mas os exponencias precisam ser substituídos pelo propagador unitário devido para  ou mais explícito com uma integral exponencial ordenada pelo tempo.

Matriz densidade[editar | editar código-fonte]

matriz densidade pode se demonstrada transformando a Representação de Dirac da mesma forma como qualquer outro operador. Em particular, deixe  e  ser a matriz de densidade na Representação de Dirac e na Representação de Schrödinger, respectivamente. Se existe possibilidade de  ser no estado físico , então


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Equações da evolução temporal[editar | editar código-fonte]

Estados da evolução temporal[editar | editar código-fonte]

Transformando a Equação de Schrödinger numa Representação de Dirac teremos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Esta equação se refere à equação Schwinger-Tomonaga.

Operadores da evolução temporal[editar | editar código-fonte]

Se o operador  é independente do tempo então a evolução temporal correspondente para  é dada por
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Na Representação de Dirac os operadores evoluem no tempo como os operadores da Representação de Heisenberg com o hamiltoniano .

Evolução temporal da matriz densidade[editar | editar código-fonte]

Transformando a equação de Schwinger-Tomonaga na linguagem da matriz densidade teremos
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Usos da Representação de Dirac



VNa mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.

O operador de evolução temporal[editar | editar código-fonte]

Definição[editar | editar código-fonte]

O operador de evolução temporal U(t,t0) é definido como:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Propriedades[editar | editar código-fonte]

Primeira propriedade[editar | editar código-fonte]

A operador da evolução temporal deve ser unitário. Isto é necessário porque nós precisamos que a norma do estado "ket" não mude com o tempo. Isto é,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em consequência disto,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Segunda propriedade[editar | editar código-fonte]

Distintamente U(t0,t0) = I, a função identidade. Como:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Terceira propriedade[editar | editar código-fonte]

A evolução temporal de t0 para t pode ser vista como a evolução temporal de t0 para um tempo t1 indeterminado e de t1 para o tempo final t. Então conclui-se:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Equação diferencial para o operador da evolução temporal[editar | editar código-fonte]

Se dermos, por convenção, o índice t0 no operador da evolução temporal de forma que t0 = 0 e escrevermos isto com U(t). A Equação de Schrödinger pode ser re-escrita da seguinte forma:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde H é o Hamiltoniano para o sistema. Como  é uma constante de ket (o estado ket é da forma t = 0), nós vemos que o operador da evolução temporal obedece a Equação de Schrödinger:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se o hamiltoniano independe do tempo, a solução da equação acima será:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde nós também usamos o facto que t = 0U(t) precisa reduzir para a função identidade. Assim obteremos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Perceba que  é um ket arbitrário. Apesar de que, se o ket inicial é um valor próprio do hamiltoniano, com o valor próprio E, nós temos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Assim, vemos que os valores próprios do hamiltoniano são estados estacionários, eles apenas escolhem um fator de fase global já que eles evoluem com o tempo. Se o hamiltoniano é dependente do tempo, mas os hamiltonianos de diferentes tempo comutam, então o operador da evolução temporal pode ser escrito da forma:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Uma alternativa para a Representação de Schrödinger é trocar para uma rotação de referências de quadros, que seja rotacionada pelo propagador do movimento. Desde que a rotação ondulatória seja agora assumida pelo próprio referencial, uma função de estados não perturbados surge para ser verdadeiramente estáticos.



Na matemática, a equação de Hamilton–Jacobi (HJE em inglês) é uma condição necessária para descrever a geometria em problemas de cálculos. Na física, ela é uma reformulação da mecânica clássica e é equivalente a outras reformulações como a segunda lei de Newtonmecânica de Lagrange e mecânica hamiltoniana. Ela foi formulada pelos matemáticos William Rowan Hamilton e Carl Gustav Jakob Jacobi.
A equação de Hamilton–Jacobi é particularmente importante por ser a única formulação matemática da mecânica em que o movimento de uma partícula pode ser representada como uma onda. Neste sentido, a equação preencheu um antigo objetivo da física teórica (iniciada no século XVIII por Johann Bernoulli) que era o de encontrar uma analogia entre a propagação da luz e o movimento de uma partícula. A equação de onda seguida por sistemas mecânicos é similar a, mas não idêntico a, equação de Schrödinger, por esta razão, a equação de Hamilton–Jacobi é considerada a maior aproximação da mecânica clássica com a mecânica quântica.[1][2]

Definição[editar | editar código-fonte]

A equação de Hamilton–Jacobi é uma equação diferencial parcial, não linear de primeira ordem para a função  chamada de função principal de Hamilton.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Esta equação pode ser obtida a partir da mecânica hamiltoniana tratando-se  como a função geradora para uma transformação canônica da mecânica Hamiltoniana . O momento conjugado corresponde à primeira derivada de  com respeito as coordenadas generalizadas
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que pode ser obtido como se segue.
A mudança na ação de um caminho para um caminho vizinho é dado por

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Desde que os caminhos do movimento atual satisfaçam a equação de Euler–Lagrange, a integral em  será zero. No primeiro termo nós colocaremos , e denotaremos o valor de  por simplesmente . Trocando  por , nós teremos
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A partir desta relação se segue que a derivada parcial da ação com respeito às coordenadas são iguais ao momento correspondente. Similarmente, as coordenadas podem ser obtidas como derivadas com respeito do momento transformado, ao se inverter estas equações, pode-se determinar a evolução do sistema mecânico, isto é, determinar as coordeadas como funções do tempo. As posições iniciais e as velocidades são as constantes da integral para a solução de , que corresponde às quantidades conservadas da evolução tal como a energia total, o momento angular, ou o vetor de Laplace–Runge–Lenz.

Comparação com outras formulações da mecânica[editar | editar código-fonte]

A equação de Hamilton–Jacobi é uma equação diferencial parcial de primeira ordem para a função  das N coordenadas generalizadas  e de tempo . O momento generalizado não aparece, exceto como derivadas de .
Para comparação, na equivalente equação de Euler–Lagrange da mecânica de Lagrange, o momento conjugado também não aparece; entretanto, estas equações são um sistema de , geralmente equações de segunda ordem da evolução temporal das coordenadas generalizadas. Como uma nova comparação, a equação de Hamilton é similar a um sistema de  equações de primeiro grau para evolução temporal das coordenadas e seus momentos conjugados .
Já que a equação de Hamilton–Jacobi é uma expressão equivalente a um problema de minimização integral como o princípio de Hamilton, ela pode ser útil em outros problemas de cálculo de variações e outros campos da matemática e da física, como sistema dinâmicogeometria simplética e caos quântico. Por exemplo a equação de Hamilton–Jacobi pode ser utilizada para de terminar as geodésicas de uma variedade de Riemann.

Notação[editar | editar código-fonte]

Para abreviar, utilizaremos negrito como em  para representar a lista de  coordenadas generalizadas.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que não precisa transformar como um vetor em rotação. O produto escalar é definido aqui como a soma dos produtos dos componentes respectivos, isto é,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS




Na física a Representação de Heisenberg, desenvolvida pelo físico Werner Heisenberg, é a formulação da mecânica quântica onde os operadores (observáveis) são dependentes do tempo e o estado quântico são independentes do tempo. Isto demonstra o contraste com a Representação de Schrödinger na qual os operadores são constantes e o estado quântico se desenvolve no tempo. Estas duas representações apenas se diferem pela mudança na dependência do tempo. Formalmente falando a Representação de Heisenberg é a formulação da mecânica matricial numa base arbitrária, onde o Hamiltoniano não é necessariamente diagonal.

Detalhes matemáticos[editar | editar código-fonte]

Na Representação de Heisenberg da mecânica quântica o estado quântico, não se modifica com o tempo, e um observador A satisfaz a equação
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde H é o hamiltoniano e [·,·] é o comutador de A e H. Em certo sentido, a Representação de Heisenberg é mais natural e fundamental que a Representação de Schrödinger, especialmente para a teoria da relatividade geral e restrita.
A similaridade da Representação de Heisenberg com a física clássica é facilmente identificada ao trocar o comutador da equação acima pelos Parênteses de Poisson, então a equação de Heisenberg se tornará uma equação da mecânica hamiltoniana.

Derivando a equação de Heisenberg[editar | editar código-fonte]

Suponha que nós tenhamos um observador A (que é um operador autoadjunto). O valor esperado de A para um dado estado  é dado por:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


ou se nós escrevermos a seguinte Equação de Schrödinger
(onde H é o hamiltoniano independente do tempo e ħ é a Constante de Planck dividida por π) nós teremos
e então nós definiremos
Agora obteremos
(diferenciando de acordo com a regra do produto)
(a última passagem é válida já que  comuta com H.) Nós agora estamos à esquerda da Equação de Heisenberg do movimento
(onde [XY] é o comutador dos dois operadores e definidos como [XY] := XY − YX).
Agora, se nós fizermos uso do operador de igualdade
Nós veremos que para um observador independente do tempo A, nós obteremos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Devido ao relacionamento entre os Parênteses de Poisson e os comutadores, esta relação também obedece à mecânica clássica.

Relacionamento do comutador[editar | editar código-fonte]

O relacionamento do comutador é bastante diferente à Representação de Schrödinger por causa da dependência do tempo dos operadores. Por exemplo, considere os operadores  e . A evolução no tempo destes operadores depende do hamiltoniano deste sistema. Para um oscilador harmônico de uma dimensão
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A evolução da posição e do operador do momento é dada por:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Pela diferenciação de ambas equações e solucionando com as devidas condições iniciais
nos leva a:
Agora nós estamos prontos para diretamente comutar a relação do comutador:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Perceba que para , simplesmente obteremos a já conhecida relação de comutação canônica.




teorema de Ehrenfest, nomeado a partir de Paul Ehrenfest, físico e matemático austríaco, relaciona a derivada do tempo do valor esperado para um operador na mecânica quântica para o comutador deste operador com o hamiltoniano do sistema. Isto é:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde A é algum operador da mecânica quântica e  é seu valor esperado.
O Teorema de Ehrenfest é obviamente a Representação de Heisenberg da mecânica quântica, onde isto é apenas o valor esperado do momento da Equação de Heisenberg.
O teorema também é altamente relacionado com o Teorema de Liouville da mecânica hamiltoniana, que envolve os Parênteses de Poisson ao invés do comutador.